Aus der Reihe "Mathematik – leicht verständlich":

Die Zahlensysteme

von Dr. Detlef Bommhardt

Dresden, Dezember 2023

Die Zahlensysteme

1	Einführung	Seite 2
2	Das Umrechnen von Zahlen aus unterschiedlichen Zahlensystemen	Seite 5
3	Das Rechnen im Dualsystem	Seite 10
3.1	Das Umrechnen von Dezimalzahlen in Dualzahlen	Seite 10
3.2	Das Umrechnen von Dualzahlen in Dezimalzahlen	Seite 12
3.3	Das Grundrechnen mit Dualzahlen	Seite 13
4	Das Rechnen im Hexadezimalsystem	Seite 14
4.1	Das Umrechnen von Dezimalzahlen in Hexadezimalzahlen	Seite 14
4.2	Das Umrechnen von Hexadezimalzahlen in Dezimalzahlen	Seite 16
4.3	Das Grundrechnen mit Hexadezimalzahlen	Seite 18
5	Das Rechnen im Oktalsystem	Seite 19
5.1	Das Umrechnen von Dezimalzahlen in Oktalzahlen	Seite 19
5.2	Das Umrechnen von Oktalzahlen in Dezimalzahlen	Seite 21
5.3	Das Grundrechnen mit Oktalzahlen	Seite 22
6	Das Rechnen im Quartalsystem	Seite 24
6.1	Das Umrechnen von Dezimalzahlen in Quartalzahlen	Seite 24
6.2	Das Umrechnen von Quartalzahlen in Dezimalzahlen	Seite 26
6.3	Das Grundrechnen mit Quartalzahlen	Seite 27
7	Das Umrechnen zwischen Hexadezimal-, Oktal-, Quartal- und Dualsystem	Seite 28

1 Einführung

Ziffer: Schriftzeichen zum Darstellen von Zahlen

Zahl: - Mengenangabe

- Darstellung in Ziffern (4.711) oder Worten ("hundert")

Additionssytem: stellenwertloses Zahlensystem

→ Das **Römische Zahlensystem** war bis ins 16. Jahrhundert in Europa in Gebrauch.

Regeln:

- 1.) Alle Symbole stehen in der Reihenfolge ihrer Werte, erst die höherwertigen, dann die niedrigeren.
- 2.) Die Hauptsymbole I, X, C und M dürfen maximal dreimal hintereinander stehen.
- 3.) Die Nebensymbole V, L und D dürfen nur einmal verwendet werden und nicht <u>vor</u> einem höherwertigen Symbol stehen.
- 4.) Vor einem Symbol steht höchstens das nächstkleinere Hauptsymbol.

Nachteile:

- lange und unübersichtliche Zahlen
- keine Null
- schwierig bei Rechenoperationen
 - z. B.: XCIX XLIX (statt: 99 49)

Beispiele:

49 = XLIX nicht: IL

99 = XCIX nicht: IC, LIL

495 = CDXCV nicht: VD, XDV, CDLXLV

999 = CMXCIX nicht: IM, XMIX, DCDLXLIX

1997 = MCMXCVII

4 = IV

Uhr der evangelischreformierten Kirche in Leipzig mit einer "falschen" Vier

Eröffnet 31. Oktober 1785

Anno 1685

Witz:

Ein Römer kommt in die Bar, streckt zwei Finger aus und sagt: "Fünf Bier bitte!"

Positionssystem: (auch: Stellenwertsystem)

von Bedeutung ist die jeweilige Position der einzelnen Ziffern innerhalb der Zahl

z. B.:
$$4711_{10} = 4 \cdot 10^3 + 7 \cdot 10^2 + 1 \cdot 10^1 + 1 \cdot 10^0$$

= $4.000 + 700 + 10 + 1$

- Das Sexagesimalsystem (Basis 60) verwendeten ca. 3000 bis 1800 v. u. Z. die Babylonier, Sumerer und Mesopotamier.
 → Zeiteinteilung, Kreiseinteilung
- Das Vigesimalsystem (Basis 20) verwendeten die Kelten in England und Frankreich, die Basken in Nordspanien, die Azteken und die Mayas in Südamerika.
 - → bis in die 1970er Jahre war ein englisches Pfund = 20 Schillinge
- Das Dezimalsystem (lat. "decem" = dt. "zehn") basiert auf der Grundzahl 10. Im Dezimalsystem gibt es die Ziffern 0, 1, 2, ... 9. Die Stellenwerte einer Dezimalzahl verlaufen von rechts nach links wie folgt: 1, 10, 100, 1.000 usw.

2 Das Umrechnen von Zahlen aus unterschiedlichen Zahlensystemen

- 1.) Welchen Dezimalwerten entsprechen die Zahlen 4.7117 / 4.7118 / 4.7119?
 - a)
 - b) $4.711_8 =$

c) 4.7119 =

=

- Welchen Dezimalwerten entsprechen die Zahlen 2.0045 / 2.) 2.0046 / 2.0047 / 2.0048 / 2.0049?
 - a) $2.004_5 =$

b) $2.004_6 =$

c) 2.0047 =

d) 2.0048 =

e) $2.004_9 =$

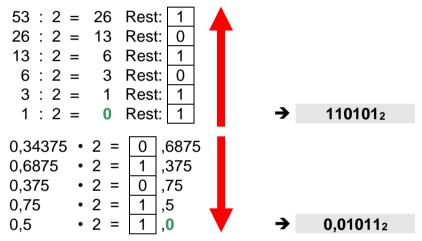
=

3.)	We 1.4	elchen Dezimalwe 43 ₉ / 1.443 ₁₁ /	erten entspi 1.443 ₁₃ ?	rechen 1.	443 ₅ /	1.4437 /
	a)	1.443 ₅ =				
	b)	1.4437 =				
	c)	1.443 ₉ =				
	d)	1.443 ₁₁ =				
	e)	1.443 ₁₃ =				
4.)		ellen Sie die De d im 9-er-Zahlens		I.711 ₁₀ im	n 7-er-,	im 8-er-
	a)					
	b)					
	-,					
	c)					

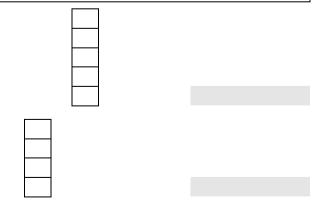
Stellen Sie die Dezimalzahl 2.004_{10} im 5er-, 6er-, 7er-, 8er- und 9er-Zahlensystem dar! 5.) a) b) c) d) e)

6.)	Stellen Sie die Dezimalzahl 11er- und 13er-Zahlensystem	r-, 7er-, 9er-,
	a)	
	b)	
	c)	
	d)	
	e)	

7.) Vervollständigen Sie folgende Tabelle, indem Sie die in der ersten Spalte stehenden Zahlenwerte jeweils in das 5er-, 6er-, 7er-, 8er-, 9er-, 10er-, 11er-, 12er- und 13er-Zahlensystem kovertieren!


			Z	Zahlens	system	е		
	5-er	6-er	7-er	9-er	10-er	11-er	12-er	13-er
1235								
1236								
1237								
1239								
123 ₁₀								
123 ₁₁								
12312								
123 ₁₃								

3 <u>Das Rechnen im Dualsystem</u>


3.1 <u>Das Umrechnen von Dezimalzahlen in Dualzahlen</u>

Das Dualsystem (auch: Binärsystem) ist ein Stellenwertsystem, das auf der Grundzahl 2 basiert. Im Dualsystem gelten die Ziffern 0 und 1. Die Stellenwerte einer Dualzahl verlaufen von rechts nach links wie folgt: 1, 2, 4, 8, 16, 32 usw.

z. B.: Welcher Dualzahl entspricht der Dezimalwert 53,34375₁₀?

8.) Welcher Dualzahl entspricht der Dezimalwert 23,9375₁₀?

9.) Welcher Dualzahl entspricht der Dezimalwert 17,78125₁₀?

3.2 <u>Das Umrechnen von Dualzahlen in Dezimalzahlen</u>

z. B.: 101011,11₂

$$= 1 \cdot 2^{5} + 0 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0} + 1 \cdot 2^{-1} + 1 \cdot 2^{-2}$$

$$= 32 + 0 + 8 + 0 + 2 + 1 + \frac{1}{2} + \frac{1}{4}$$

 $= 43,75_{10}$

10.) Welchem Dezimalwert entspricht die Dualzahl 11011,101₂?

11011,1012

=

=

=

11.) Welchem Dezimalwert entspricht die Dualzahl 10011,10012?

10011,10012

=

=

=

3.3 Das Grundrechnen mit Dualzahlen

<u>z. B.:</u> 1 0 1 1 , 0 1 + 1 1 0 0 , 1 1 11,25 + 12,75 24,00

<u>z. B.:</u> 1 0 0 1 1 0 , 0 1 - 1 0 0 1 1 , 1 1 38,25 - 19,75 18,50

z. B.: 1011,101 • 11,1 1011101 1011101 1011101 101000,1011 11,625 • 3,5 34875 58125 40,6875

12.) Addieren Sie im Dualsystem!

13,75 + 6,50

29,00 + 9,25

c) 1 1 1 1 0 1 , 1 1 + 1 1 0 1 1 , 0 1

61,75 + 27,25

13.) Subtrahieren Sie im Dualsystem!

a) 1 1 0 1 , 1 1 - 1 1 0 , 1 0

13,75 - 6,50

29,00 - 9,25

61,75 - 27,25

4 <u>Das Rechnen im Hexadezimalsystem</u>

4.1 <u>Das Umrechnen von Dezimalzahlen in Hexadezimalzahlen</u>

Das Hexadezimalsystem ist ein Stellenwertsystem, das auf der Grundzahl 16 basiert. Im Dualsystem gelten die Ziffern 0, 1, 2, ... 9, A, B, C, D, E und F. Die Stellenwerte einer Hexadezimalzahl verlaufen von rechts nach links wie folgt: 1, 16, 256, 4.096 usw.

Das Umrechnen von Dezimalzahlen in Hexadezimalzahlen erfolgt über den Zwischenschritt Dualsystem. Die dabei ermittelte Dualzahl wird in Viererblöcken (Tetraden) zusammengefasst.

Z. B.:
$$147_{10} = 144 + 3$$

 $= 9 \cdot 16^{1} + 3 \cdot 16^{0} = 93_{16}$
oder: $147_{10} = 128 + 16 + 2 + 1 =$
 $= 2^{7} + 2^{4} + 2^{1} + 2^{0} = 1001 0011$
 $= 93_{16}$
oder: $147: 16 = 9 \text{ Rest: } 3$
 $9: 16 = 0 \text{ Rest: } 9$

14.) Stellen Sie die Dezimalzahl 112,375₁₀ als Hexadezimalzahl dar!

$$112,375_{10} =$$

oder:

oder:

15.) Stellen Sie die Dezimalzahl 193,625₁₀ als Hexadezimalzahl dar!

=

oder:

=

oder:

4.2 Das Umrechnen von Hexadezimalzahlen in Dezimalzahlen

Das Umrechnen von Zahlen aus dem Hexadezimalsystem in das Dezimalsystem erfolgt ebenfalls über den Zwischenschritt Dualsystem. D. h., jeweils eine Dualtetrade entspricht einer Hexadezimalziffer.

16.) Welchem Dezimalwert entspricht die Hexadezimalzahl 2CB₁₆?

2CB ₁₆	=		
	=		
	=		

oder:

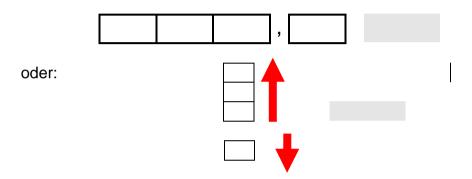
17.)	Welch 08151		Dezimalwert	entspricht	die	Hexadezimalzahl
	81516	=				
		=				
		=				
	oder:					

4.3 <u>Das Grundrechnen mit Hexadezimalzahlen</u>

18.) Addieren Sie im Hexadezimalsystem!

19.) Subtrahieren Sie im Hexadezimalsystem!

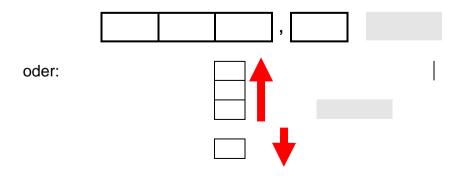
5 <u>Das Rechnen im Oktalsystem</u>


5.1 <u>Das Umrechnen von Dezimalzahlen in Oktalzahlen</u>

Das Oktalsystem ist ein Stellenwertsystem, das auf der Grundzahl 8 basiert. Im Oktalsystem gelten die Ziffern 0, 1, 2, ... 7. Die Stellenwerte einer Oktalzahl verlaufen von rechts nach links wie folgt: 1, 8, 64, 512, 4.096 usw.

Das Umrechnen von Dezimalzahlen in Oktalzahlen erfolgt über den Zwischenschritt Dualsystem. Die dabei ermittelte Dualzahl wird in Dreierblöcken (Triaden) zusammengefasst.

20.) Stellen Sie den Dezimalwert 92,25₁₀ als Oktalzahl dar!


oder:

21.) Stellen Sie den Dezimalwert 87,75₁₀ als Oktalzahl dar!

=

oder:

5.2 Das Umrechnen von Oktalzahlen in Dezimalzahlen

Das Umrechnen von Zahlen aus dem Oktalsystem in das Dezimalsystem erfolgt ebenfalls über den Zwischenschritt Dualsystem. D. h., jeweils eine Dualtriade entspricht einer Oktalziffer.

z. B.:
$$147_8 = 1 \cdot 8^2 + 4 \cdot 8^1 + 7 \cdot 8^0$$

$$= 64 + 32 + 7 = 103_{10}$$
oder: $1 \quad 4 \quad 7$

$$001 \quad 100 \quad 111$$

$$1 \cdot 8^2 + 4 \cdot 8^1 + 7 \cdot 8^0$$

$$64 + 32 + 7 = 103_{10}$$

23.) Welchem Dezimalwert entspricht die Oktalzahl 237,28?

=

oder:

			-
		,	
I			

5.3 <u>Das Grundrechnen mit Oktalzahlen</u>

24.) Addieren Sie im Oktalsystem!

a)
$$365,3_8$$
 $245,375_{10}$ $+ 256,4_8$ $+ 174,500_{10}$

b)
$$623,1_8$$
 $403,125_{10}$ $+234,6_8$ $+156,750_{10}$

d)
$$135,1_8$$
 $93,125_{10}$ $+ 132,7_8$ $+ 90,875_{10}$

25.) Subtrahieren Sie im Oktalsystem!

a)
$$365,38$$
 $245,375_{10}$ $-256,4_8$ $-174,500_{10}$

b)
$$623,1_8$$
 $403,125_{10}$ $-234,6_8$ $-156,750_{10}$

c)
$$453,2_8$$
 $299,250_{10}$ $-375,6_8$ $-253,750_{10}$

d)
$$135,1_8$$
 $93,125_{10}$ $-132,7_8$ $-90,875_{10}$

6 Das Rechnen im Quartalsystem

6.1 <u>Das Umrechnen von Dezimalzahlen in Quartalzahlen</u>

Das Quartalsystem ist ein Stellenwertsystem, das auf der Grundzahl 4 basiert. Im Quartalsystem gelten die Ziffern 0, 1, 2 und 3. Die Stellenwerte einer Quartalzahl verlaufen von rechts nach links wie folgt: 1, 4, 16, 64, 256 usw.

Das Umrechnen von Dezimalzahlen in Quartalzahlen erfolgt über den Zwischenschritt Dualsystem. Die dabei ermittelte Dualzahl wird in Zweierblöcken zusammengefasst.

z. B.:
$$147_{10} = 128 + 16 + 0 + 3$$

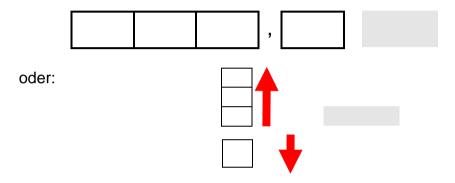
$$= 2 \cdot 4^{3} + 1 \cdot 4^{2} + 0 \cdot 4^{1} + 3 \cdot 4^{0} = 2103_{4}$$
oder: $2 \quad 1 \quad 0 \quad 3$

$$10 \quad 01 \quad 00 \quad 11$$

$$2^{7} \quad 2^{4} \quad 0 \quad 2^{1} + 2^{0}$$

$$128 + 16 + 0 + 2 + 1 = 147_{10}$$
oder: $147: 4 = 36 \text{ Rest: } 3$

$$36: 4 = 9 \text{ Rest: } 0$$

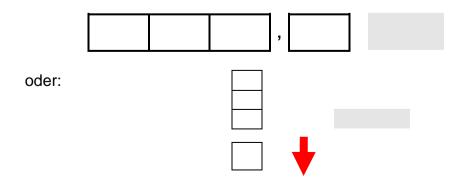

$$9: 4 = 2 \text{ Rest: } 1$$

$$2: 4 = 0 \text{ Rest: } 2$$

26.) Stellen Sie den Dezimalwert 42½10 als Quartalzahl dar!

42,5₁₀ =

oder:



27.) Stellen Sie den Dezimalwert 36¾10 als Quartalzahl dar!

36,7510 =

=

oder:

6.2 <u>Das Umrechnen von Quartalzahlen in Dezimalzahlen</u>

Das Umrechnen von Zahlen aus dem Quartalsystem in das Dezimalsystem erfolgt ebenfalls über den Zwischenschritt Dualsystem.

z. B.:
$$132_4 = 1 \cdot 4^2 + 3 \cdot 4^1 + 2 \cdot 4^0$$

= $16 + 12 + 2 = 30_{10}$
oder: $1 \quad 3 \quad 2$
 $01 \quad 11 \quad 10$
 $1 \cdot 4^2 + 3 \cdot 4^1 + 2 \cdot 4^0$
 $16 + 12 + 2 = 30_{10}$

28.) Welchem Dezimalwert entspricht die Quartalzahl 21,334?

oder:

	,	

29.) Welchem Dezimalwert entspricht die Quartalzahl 11,224?

oder:

6.3 <u>Das Grundrechnen mit Quartalzahlen</u>

30.) Addieren Sie im Quartalsystem!

a)
$$312,24$$
 $54,50_{10}$ $+ 123,34$ $+ 27,75_{10}$

c)
$$300,24$$
 $48,50_{10}$ $+ 211,3_4$ $+ 37,75_{10}$

31.) Subtrahieren Sie im Quartalsystem!

a)
$$312,24$$
 $54,50_{10}$ $-123,3_4$ $-27,75_{10}$

b)
$$232,14$$
 $46,25_{10}$ $-133,2_4$ $-31,50_{10}$

c)
$$300,24$$
 $48,50_{10}$ $-211,34$ $-37,75_{10}$

7 <u>Das Umrechnen zwischen Hexadezimal-, Oktal-,</u> Quartal- und Dualsystem

Werden die Ziffern einer Dualzahl beginnend ab dem Komma zu Zweier-, Dreier- (auch: Triaden) oder Viererblöcken (auch: Tetraden) zusammengefasst, ergeben sich die Ziffern der gleichwertigen Quartal-, Oktal- bzw. Hexadezimalzahl.

z. B.: Wandeln Sie die Dualzahl 110110010,01112 in eine Quartal-, eine Oktal- und eine Hexadezimalzahl!

32.) Wandeln Sie die Dualzahl 100101010,10102 in eine Quartal-, eine Oktal- und eine Hexadezimalzahl!

Dezimal- system	Dual- system	Quartal- system	Oktal- system	Hexadez system
110	12	1 ₂ 1 ₄	1 ₂ 1 8	1 ₂ 1 16
210	102	10 ₂ 24	10 ₂ 28	10 ₂ 2 16
3 ₁₀	112	11 ₂ 34	11 ₂ 3 8	11 ₂ 3 16
410	1002	1 00 ₂ 10 4	100 ₂ 4 8	100 ₂ 4 16
5 ₁₀	1012	1 01 ₂ 11 4	101 ₂ 5 8	101 ₂ 516
610	1102	1 10 ₂ 12 ₄	110 ₂ 6 8	110 ₂ 6 16
710	1112	1 11 ₂ 13 4	111 ₂ 7 8	111 ₂ 7 16
810	10002	10 00 ₂ 20 4	1 000 ₂ 10 8	1000 ₂ 8 16
9 ₁₀	10012	10 01 ₂ 21 ₄	1 001 ₂ 11 8	1001 ₂ 9 16
10 ₁₀	10102	10 10 ₂ 22 4	1 010 ₂ 12 8	1010 ₂ A 16
1110	10112	10 11 ₂ 23 4	1 011 ₂ 13 ₈	1011 ₂ B ₁₆
1210	11002	11 00 ₂ 30 4	1 100 ₂ 14 8	1100 ₂ C 16
13 ₁₀	11012	11 01 ₂ 314	1 101 ₂ 15 8	1101 ₂ D 16
14 ₁₀	11102	11 10 ₂ 32 4	1 110 ₂ 16 ₈	1110 ₂ E 16
1510	11112	11 11 ₂ 33 4	1 111 ₂ 17 8	1111 ₂ F 16
1610	100002	1 00 00 ₂ 100 ₄	10 000 ₂ 20 8	1 0000 ₂ 10 16
17 ₁₀	100012	1 00 01 ₂ 101 ₄	10 001 ₂ 21 8	1 0001 ₂ 11 16

Dezimal- system	Dual- system	Quartal- system Zweierblöcke	Oktal- system Dreierblöcke	Hexadez system Viererblöcke
$\frac{1}{2} = 0,5_{10}$	0,12	0,10 ₂ 0,2 ₄	0,100 ₂ 0,4 ₈	0,1000 ₂ 0,8 16
$\frac{1}{4}$ = 0,25 ₁₀	0,012	0,01 ₂ 0,1 4	0,010 ₂ 0,2 8	0,0100 ₂ 0,4 16
$\frac{3}{4} = 0.75_{10}$	0,112	0,11 ₂ 0,3 4	0,110 ₂ 0,6 8	0,1100 ₂ 0,C 16
$\frac{1}{8}$ = 0,125 ₁₀	0,0012	0,00 10 ₂ 0,024	0,001 ₂ 0,1 8	0,0010 ₂ 0,2 16
$\frac{3}{8}$ = 0,375 ₁₀	0,0112	0,01 10 ₂ 0,12 4	0,011 ₂ 0,3 8	0,0110 ₂ 0,6 16
$\frac{5}{8}$ = 0,625 ₁₀	0,1012	0,10 10 ₂ 0,22 4	0,101 ₂ 0,5 8	0,1010 ₂ 0,A 16
$\frac{7}{8}$ = 0,875 ₁₀	0,1112	0,11 10 ₂ 0,32 4	0,111 ₂ 0,7 8	0,1110 ₂ 0,E 16
$\frac{1}{16} = 0,0625_{10}$	0,00012	0,00 01 ₂ 0,01 4	0,000 100 ₂ 0,04 8	0,0001 ₂ 0,1 16
$\frac{3}{16} = 0,1875_{10}$	0,00112	0,00 11 ₂ 0,03 4	0,001 100 ₂ 0,14 ₈	0,0011 ₂ 0,3 16
$\frac{5}{16} = 0,3125_{10}$	0,01012	0,01 01 ₂ 0,11 4	0,010 100 ₂ 0,24 8	0,0101 ₂ 0,5 16
$\frac{7}{16} = 0,4375_{10}$	0,01112	0,01 11 ₂ 0,13 4	0,011 100 ₂ 0,34 8	0,0111 ₂ 0,7 16
$\frac{9}{16} = 0,5625_{10}$	0,10012	0,10 01 ₂ 0,21 4	0,100 100 ₂ 0,44 8	0,1001 ₂ 0,9 16
$\frac{11}{16} = 0,6875_{10}$	0,10112	0,10 11 ₂ 0,23 4	0,101 100 ₂ 0,54 8	0,1011 ₂ 0,B 16
$\frac{13}{16} = 0,8125_{10}$	0,11012	0,11 01 ₂ 0,31 4	0,110 100 ₂ 0,64 8	0,1101 ₂ 0,D 16
$\frac{15}{16} = 0,9375_{10}$	0,11112	0,11 11 ₂ 0,33 4	0,111 100 ₂ 0,74 ₈	0,1111 ₂ 0,F ₁₆

33.) Wandeln Sie die Dualzahl 1110010011,01012 in eine Quartal-, eine Oktal- und eine Hexadezimalzahl!
1110010011,0101 ₂ = , , , , , , , , , , , , , , , , , , ,
1110010011,0101 ₂ =
1110010011,0101 ₂ =
34.) Wandeln Sie die Quartalzahl 1233,234 in eine Oktal- und
eine Hexadezimalzahl!
1233,23 ₄ =
1233,234 =
35.) Wandeln Sie die Quartalzahl 1302,024 in eine Oktal- und eine Hexadezimalzahl!
1302,024 =
1302,02 ₄ =

36.) Wandeln Sie die Oktalzahl 2307,574 in eine Quartal- und eine Hexadezimalzahl!

23	307,5	7 ₈														
=								,								
=								,								
2307,578																
=							,									
=							٦.									

37.) Ergänzen Sie in der folgenden Tabelle die fehlenden Werte! Hexa-Dual-Oktal-Dezimal-Quartaldezimalsystem system system system system Dual-10101010101 system Quartal-12121 system Oktal-707 system Dezimal-481 system Hexa-19D dezimalsystem